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COMMENT 

Density of states of a Sierpinski gasket in two dimensions with 
anisotropic interactions 

M Hood? and B W Southern$$ 
t Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 
$ CEN Saclay, Service de Physique Thkorique, 91191 Cif-sur-Yvette, Cedex, France 

Received 2 December 1985, in final form 16 January 1986 

Abstract. The density of states of a quadratic Hamiltonian, with some anisotropy in the 
interactions, on a Sierpinski gasket in two dimensions is calculated. It is shown that the 
isotropic gasket is special in that the spectrum is composed of two distinct parts which 
correspond to localised molecular modes and hierarchical modes respectively. When 
anisotropy is added, the localised molecular modes disappear and only the hierarchical 
states remain. 

Recently there has been a growing interest in the spectral properties of self-similar or 
fractal lattices (Mandelbrot 1979), and they have been used as simple models of 
disordered systems. Because of their dilation symmetry many problems can be solved 
exactly on these lattices using renormalisation group methods (Dhar 1977). In par- 
ticular the density of states (DOS) of a quadratic Hamiltonian, for example the tight- 
binding model, on the Sierpinski gasket in d = 2 has been studied by several groups 
(Domany et al 1983, Rammal 1983, 1984, Tremblay and Southern 1983, Southern and 
Douchant 1985). The DOS is a superposition of two distinct contributions: the first 
part consists of a discrete spectrum of localised molecular modes which have non-zero 
amplitudes on a finite number of sites whereas the second part is a Cantor set 
corresponding to modes with a hierarchy of localisation lengths (see Rammal (1984) 
for a detailed discussion). 

In this comment we study the effects on the DOS of adding some anisotropy to the 
parameters of the system. The construction of the Sierpinski gasket is shown in figure 
1. At each level three sites are inserted into each upward-pointing triangle and joined 

C c r 

A c A 

Figure 1. The construction of the Sierpinski gasket is shown, with the labelling of sites ( A  
and C) appropriate to this problem. 
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to obtain the next level. The labelling of sites refers to the problem considered here. 
The Green functions for the system are given by the equations 

( E  + iV - El)GIJ = 8, + ViG!, ( 1 )  
I 

where E + iv  is the complex energy. We have E ,  = if i is a 
C site, VI, = VI if i and I are nearest-neighbour A sites, V,, = V2 if i and J are 
nearest-neighbour A and C sites and VI = 0 otherwise. For the specific case of a 
ferromagnet with exchange interactions given by - V, and - V,, we have 

if i is an A site, E ,  = 

We use the formalism described by Tremblay and Southern (1983) and only present 
a brief outline and the necessary equations here. The generating function for this 
problem is 

F = In( [ Du exp{(i/2) U'[ ( E  + iv )1-  HI U } )  (3) 

where UT = ( u l ,  u2, . , . u N ) ,  with U, being a continuous variable at sites i on the lattice. 
In our case the N x N matrix H is given by 

H, = 6~88, + V J .  (4) 
We calculate F using an exact rescaling procedure that involves a partial integration 
over the variables associated with the smallest triangles. F can then be written as 

F = I n (  [ D u ' e ~ p { ( i / 2 ) U ~ ' [ ( E + i ~ ) 1 - H ~ ~ ] U ' }  +NC' 1 
with the integration over uneliminated sites only and 

Hi,=  H11+H12[(E+i~)1-H22]-1H21 (6) 
NC'= -f ln{det[(E + iv )Z-  H2,]}. (7) 

The uneliminated sites form a gasket in which all distances have been scaled by a 
factor of 2 and (6) yields recursion relations for VI, V2, E A  and Ec which can be 
iterated. If we define the dimensionless parameters 

X I A =  V l / E A  X 2 A =  v2/ EA x 2 c  = Vz/Ec (8)  
then the new renormalised parameters are given by 

X I A  = ( x 2 A x 2 C  + X 1 A  y ) / (  1 - 3 y+ 2 X 2 A x 2 C )  

X!LA= y ) x 2 A / ( 1 - 3  y + 2 x 2 A x 2 C )  

(9) xi, = ( X I A +  Y ) x 2 C / (  1 -3 Y +  2 x : A )  

Y = x : A  + 2 X 2 A X 2 C  + 2 X ] A X Z A X 2 C .  

The constant term in F above after 1 iterations is given by 
c'"= C"-"+[h(l- Y)-ln(l-3Y+2X:A)-2ln(l-3Y+2X2AX2C)]"-"/(2x3'+') 

(10) 
with C(O) = -(2 In E,+ln E,)/6. 

the identity 
The DOS is obtained by iterating the above recursion relations for F and then using 

p(E, 7) = (2/rrN) Im[aF(E +is ) /aE] .  (11) 
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It is straightforward but tedious to differentiate both sides of (10) with respect to E 
using the chain rule. For any given value of 7, V, and V, (and hence X l A ,  x 2 A  and 
X 2 c )  iterate to zero and aC"'/dE converges. We iterate aC"'/aE numerically until it 
converges to the required accuracy and take the imaginary part to obtain the DOS. 

Before discussing the results we make a few comments about special values of 
V,/ VI.  The isotropic case mentioned earlier is given by V, = V, and this spectrum has 
been discussed in detail by Rammal(1983,1984). At low E, the DOS behaves as E'd-2"2 
where d' is the spectral dimension. It is related to the fractal dimension D and the 
dynamic scaling exponent z by d' = 2 D / z .  The state with the highest energy is a 
localised molecular mode located at E = -6 VI.  In the opposite extreme of V, = 0, the 
system reduces to a chain of A sites with isolated C sites. The DOS for this case is 
continuous and is the superposition of the DOS for a linear chain, with square root 
singularities at the band edges, accounting for: of the integrated DOS, and a 6 function 
at E = O  due to the free C sites with a weight o f f .  

One might expect the spectrum to evolve continuously from the isotropic limit to 
the chain limit as V2/V, decreases. However, this is not the case as can be seen in 
figures 2-5 where the DOS is plotted as a function of E for various values of V,/V, 
and = 0.01. The localised molecular modes of the isotropic gasket disappear when 
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Figure 2. The DOS is shown as a function of E for V, = - 1  and V, = -0.1. The imaginary 
part in the energy is 7 = 0.01, 
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Figure 3. The DOS for V, = - 1  and V, = -0.5 with a = 0.01. 

V2 is no longer equal to V , .  We also see that gaps and peaks appear in the spectra 
as soon as V2 is non-zero. 

Various features of the spectra can be understood in terms of the fixed points of 
the transformatior. in (9). For convenience we define a row vector X = (XIA, X2*,  X 2 = ) .  
There is a trivial stable fixed point at X* = (0, 0,O) which is an attractive sink for all 
complex energies. There is an unstable fixed point at X *  = ($, $, $), which is a fixed 
point of the isotropic case, with eigenvalues 5 ,  1 and 4. The dynamic critical exponent 
z is related to the lareast eieenvalue A hv z =In A /In 2 whereas the fractal dimension 

-r '  - --- - - - - - - - - - - - _ _  - - - -_ o--- --o---. .. 

D of the gasket is D = l n 3 / l n 2 .  This fixed point controls the behaviour of the DOS 

near E = O  for all V, except the chain limit V,=O. Hence the spectral dimension of 
the anisotropic gasket remains unchanged. There is a line of fixed points at X*= 
(i, 0, X 2 c )  with arbitrary X Z c ,  with eigenvalues 9 ,3  and 1. The low E DOS is controlled 
by the fixed point located at X, ,  = 0 on this line in the chain limit and has a spectral 
dimension of unity. A fixed point at X *  = (-t, 0,O) with eigenvalues 9, -1, -$ describes 
the upper band edge of the chain which also has a square root divergence. 

In addition to these fixed points, there is also a limit cycle (a fixed point with 
eigenvalues 81, 1 and $ under two iterations, at X *  = (-f, X Z A ,  0) with arbitrary XZA) 
which controls the behaviour of the DOS at the upper edge of the spectrum in the 
anisotropic case. The upper edge of the spectrum is at E = -4V, - 2 V,, which has 



DOS for a Z D  anisotropic Sierpinski gasket 

4 -  

y 1 .  

W 
L 6 L 

*- 
IA 2 -  
0 

2683 

0 2 4 6 
E 

Figure 4. The DOS for V, = -1  and V, = -0.9 with 7 =0.01. 

XI, = -4, and iterates towards the limit cycle mentioned above, except for the cases 
where V2 = V, or V, = -2 VI, and the DOS has a square root divergence, as in the chain. 
The isotropic case V2= VI is not attracted to this limit cycle but has a local mode at 
E = -6V, whose weight in the DOS is i. 

For the isotropic gasket, the localised molecular modes correspond to energies for 
which vi’ = E g )  = 0 at the Ith step. However, for the anisotropic gasket, these condi- 
tions cannot be satisfied simultaneously. For example, the conditions Vi = E &  = 0 give 
two solutions; one is V2 = VI and E = -6 V, , and the other is V, = -2 VI and E = 0. 
However, the latter solution lies outside the range of values of the parameters for 
which the ferromagnetic ground state is stable. 

For general V2/ VI the spectrum consists of bands and gaps. There is always a gap 
edge at E = -3 V, -2V, for which the recursion relations iterate to the fixed line 
X* = (f, 0, X Z c )  as soon as V2 is non-zero. Since the leading eigenvalue is 9, the DOS 
has a square root divergence at this edge. In the isotropic case this energy iterates to 
the isotropic fixed point which controls the E = 0 modes and the spectral dimension 
is In 9/ln 5.  

Hence we reach the unexpected conclusion that there are hierarchical modes present 
for the non-isotropic gasket but the molecular modes have disappeared. These modes 
are replaced by bands which have singularities at the edges of the inverse square root 
type. In addition, the upper band edges of the hierarchical modes have a different 
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Figure 5. The DOS for V, = V, = -1, i.e. the isotropic limit, with 7 =0.01. 

behaviour in the anisotropic case. It appears that the isotropic gasket is in fact a very 
special case of the more general problem. 
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